Mark schemes Q1. (a) $$P_4 + 5 O_2 \rightarrow P_4 O_{10}$$ Allow $4 P + 5 O_2 \rightarrow P_4 O_{10}$ (b) $SO_2 + H_2O \rightarrow H_2SO_3$ Or $$SO_2 + H_2O \rightarrow 2 H^+ + SO_3^{2-}$$ Or $$SO_2 + H_2O \rightarrow H^+ + HSO_3^-$$ Do not accept H₂SO₄ Allow (d) M1 Mg + $$H_2O \rightarrow MgO + H_2$$ **M2** White solid/white powder **OR** (Bright) white light/white flame Do not accept white ppt Do not accept effervescence (e) 3 MgO + 2 H₃PO₄ \rightarrow Mg₃(PO₄)₂ + 3 H₂O Allow 3 MgO + 2 H₃PO₄ \rightarrow 3 Mg²⁺ + 2 PO₄³⁻ + 3 H₂O [6] 2 1 1 Q2. (a) forms a solution with pH = 14 at 25°C auto (b) $Al_2O_3 + 3H_2SO_4 \rightarrow Al_2(SO_4)_3 + 3H_2O$ allow multiples ignore state symbols (c) universal indicator SO₂(aq) orange-red SO₃(aq) red allow correct comparison of acidic colours (red, orange, yellow) or pH meter SO₂(aq) pH 2-3 SO₃(aq) pH 0-1 allow correct comparison of acidic pH ignoring values or any named metal carbonate (**or** formula) **or** Mg **or** Ca **or** Zn SO₂(aq) slower effervescence SO₃(aq) faster effervescence if reagent is incomplete lose M1 and mark on allow observation allow correct comparison allow named oxidising agent eg (acidified) KMnO₄ **or** (acidified) K₂Cr₂O₇ SO₂(aq) correct colour acidified change SO₃(aq) no visible change **or** NVC allow (acidified) barium chloride solution **or** allow (acidified) barium chloride solution SO₂(aq) no visible change **or** NVC SO₃(aq) white precipitate (d) ${}^{31}P_4^+$ Allow $P_4^+ = 1$ mark Allow $^{31}P = 1$ mark 1 1 (e) $$P_4O_{10}$$ + 12 NaOH \rightarrow 4 Na₃PO₄ + 6 H₂O allow formation of acid salts P_4O_{10} + 4 NaOH + 2 H₂O \rightarrow 4 NaH₂PO₄ P_4O_{10} + 8 NaOH \rightarrow 4 Na₂HPO₄ + 2 H₂O must show all bonds (g) This question is marked using levels of response. Refer to the Mark Scheme Instructions for Examiners for guidance on how to mark this question. | Level 3 | All stages are covered and the description of each stage is generally correct and virtually complete. | |----------------------|--| | 5-6 marks | Answer is communicated coherently and shows a logical progression from stage 1 to stage 2 and stage 3. | | Level 2
3-4 marks | All stages are covered but the description of each stage may be incomplete or may contain inaccuracies OR two stages are covered and the explanations are generally correct and virtually complete. Answer is mainly coherent and shows progression from stage 1 to stage 2 and/or stage 3. | | Level 1
1-2 marks | Two stages are covered but stage(s) may be incomplete or may contain inaccuracies OR only one stage is covered but is generally correct and virtually complete. Answer includes isolated statements and these are presented in a logical order. | | 0 marks | Insufficient correct chemistry to gain a mark. | indicative chemistry content contradictions negate statements ## Stage 1 structure - 1a NaCl ionic lattice **or** giant ionic - 1b Cl₂ and HCl molecular (covalent) or Cl₂ and HCl (simple) molecules ## Stage 2 forces responsible for melting point - 2a NaCl attractions between + and ions - 2b Cl₂ vdw forces - 2c HCl dipole dipole forces ## Stage 3 comparison of melting point - 3a ionic bonds stronger than IMF - 3b chlorine/Cl₂ is a bigger (molecule) than HCl or chlorine/Cl₂ has more electrons than HCl - 3c more/stronger forces <u>between molecules</u> in Cl₂ than those in HCl or more/stronger IMF in Cl2 than those in HCl or vdw <u>between molecules</u> in Cl₂ > dipole dipole between molecules in HCl [15]